## Math 1320: Systems of Linear Equations in Three Variables

What is a linear equation in three variables? Previously, we worked with linear systems in two variables, $x$ and $y$. In general, the linear equations in the systems were generally of the form:

$$
A x+B y=C
$$

For linear equations in three variables ( $x, y$, and $z$ ), they will generally be of the form:

$$
A x+B y=C z=D
$$

The graph of a linear equation in three variables is a plane in three-dimensional space, as shown below:


* Note: The two planes occurs when we have a system of 2 linear equations in three variables. In this case, the system will have infinitely many solutions.

How do we solve a system of linear equations in three variables? Similarly to solving linear systems in two variables, we will use an elimination method. Since we are working in a three-dimensional space, our solution will be an ordered triple, $(x, y, z)$, that satisfies all equations in the system.

| Solving Linear Systems in Three Variables by Eliminating Variables |  |
| :---: | :--- |
| Step 1 | Reduce the system to two equations in two variables. This is usually <br> accomplished by taking two different pairs of equations and using the addition <br> method to eliminate the same variable from both pairs. |
| Step 2 | Solve the resulting system of two equations in two variables using addition or <br> substitution. The result is an equation in one variables that gives the value of that <br> variable. |
| Step 3 | Back-substitute the value of the variable found in step 2 into either of the <br> equations in two variables to find the value of the second variable. |
| Step 4 | Use the values of the two variables from steps 2 and 3 to find the value of the <br> third variable by back-substituting into one of the original equations. |
| Step 5 | Check the proposed solution in each of the original equations. |

It does not matter which variable we choose to eliminate first, as long as we eliminate the same variable in two different pairs of equations.

Example 1. Solve the system: $\begin{cases}x-y+3 z=8 \\ 3 x+y-2 z=-2 & \text { (Eq. 1) } \\ 2 x+4 y+z=0 & \text { (Eq. 2) } \\ \text { (Eq. 3) }\end{cases}$
Step 1: Reduce the system to two equations in two variables. Let's eliminate $x$ with equations 1 and 2 :

$$
\begin{array}{lrl}
x-y+3 z=8 & \text { Multiply by }-3 \rightarrow & -3 x+y-9 z=-24 \\
3 x+y-2 z=-2 & \text { No Change } \rightarrow & \begin{array}{c}
3 x+y-2 z=-2
\end{array} \\
\hline & \text { Add: } \quad 4 y-11 z=-26 \quad \text { (Eq. 4) }
\end{array}
$$

Now eliminate $x$ with equations 1 and 3 :

$$
\begin{array}{lrl}
x-y+3 z=8 & \text { Multiply by }-2 \rightarrow & -2 x+2 y-6 z=-16 \\
2 x+4 y+z=0 & \text { No Change } \rightarrow & \begin{array}{c}
2 x+4 y+z=0 \\
\text { Add: }
\end{array} \quad 6 y-5 z=-16 \quad \text { (Eq. 5) }
\end{array}
$$

Now we have a new system with two equations in two variables:

$$
\left\{\begin{array}{l}
4 y-11 z=-26 \\
6 y-5 z=-16
\end{array}\right.
$$

Step 2: Now we need to solve our new system. Let's eliminate $y$ :

$$
\begin{aligned}
& 4 y-11 z=-26 \quad \text { Multiply by } \frac{-2}{3} \longrightarrow \quad 4 y-11 z=-26 \\
& 6 y-5 z=-16 \quad \text { Multiply by } \frac{-2}{3} \longrightarrow \quad-4 y+\frac{10}{3} z=\frac{32}{3} \\
& \text { Add: } \\
& -\frac{23}{3} z=-\frac{46}{3} \\
& z=2 \quad \text { (Multiply both sides by }-\frac{3}{23} \text { ) }
\end{aligned}
$$

Step 3: Back-substitute 2 for $z$ in equation 4 or equation 5 to find the value of $y$. Let's use equation 5 :

$$
\begin{array}{ll}
6 y-5 z=-16 & \text { Equation } 5 \\
6 y-5(2)=-16 & \text { Substitute } 2 \text { for } z \\
6 y-10=-16 & \text { Multiply } \\
6 y=-6 & \text { Add } 10 \text { to both sides } \\
y=-1 & \text { Divide both sides by } 6
\end{array}
$$

Step 4: Back-substitute 2 for $z$ and -1 for $y$ in one of the original equations to find the value of $x$. Let's use equation 1 :

| $x-y+3 z=8$ | Equation 1 |
| :--- | :--- |
| $x-(-1)+3(2)=8$ | Substitute 2 for $z$ and -1 for $y$ |
| $x+1+6=8$ | Multiply |
| $x+7=8$ | Add |
| $x=1$ | Subtract 7 from both sides |

The proposed solution is $(1,-1,2)$.
Step 5: Check our solution. Does $(1,-1,2)$ make the equations in our original system true? Yes, by substituting the values for $x, y$, and $z$ into each of the three original equations, we get three true statements.

Practice Problems: Solve each system.

1. $\left\{\begin{array}{c}x+2 y-3 z=-3 \\ 2 x-5 y+4 z=13 \\ 5 x+4 y-z=5\end{array} \quad[(2,-1,1)]\right.$
2. $\left\{\begin{array}{c}2 x+y-z=5 \\ 3 x-2 y+z=16 \\ 4 x+3 y-5 z=3\end{array} \quad[(4,-1,2)]\right.$
